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Abstract. We investigate the magnetic field behaviour of an antifemmagnetic Heisenberg spin-1 
chain with the most general single-ion anisotropy. We discuss the regime in which the magnetic 
field is below the vansition value. The splitting of the Haldane triplet is obtained as a function 
of a field applied in an arbitrary orientation by means of a Lanczds exact diagonalization of 
chains of up to 16 spins. Our results are well summarized in terms of a first-order perturbation 
theory. We explain various level crossings that occur by the existence of discrete symmetries. 
A discussion is given of the eIectron.spinmsonance and neutron-scattering experiments on the 
compound Ni(CzHsNz)2NOzClOI (Nm)). 

1. Introduction 

There is good evidence that the integer-spin Heisenberg antiferromagnetic chains have a 
gap, as suggested by Haldane [ 11. This is established on the theoretical side by various 
techniques including finite-size calculations as well as field theoretic arguments [2]. On 
the experimental side the first evidence [3] came from CsNiC13: neutron scattering (NS) 
revealed an excitation gap. Since this compound is only moderately one dimensional, 
parasitic three-dimensional effects complicate the picture. On the other hand, the compound 
[4] Ni(CZH8N2)2NO2CIO4, abbreviated as NENP, is much more one dimensional and remains 
in a magnetically disordered state even at very low temperature. Zero-field NS experiments 
[5] have clearly shown the existence of the Haldane triplet split by easy-plane anisotropy. 
In addition, a number of other measurements have been performed [5-81 in a magnetic 
field: susceptibility, high-field magnetization, and NS in a finite field. The application of a 
magnetic field leads to a Zeeman splitting of the Haldane triplet and one member of this 
triplet crusses the ground state at a critical value Hc that depends on the field orientation. 
This is clearly seen in NS experiments where all members of the triplet can be followed 
individually [9]. Experiments using the electron-spin-resonance (ESR) technique are in 
excellent agreement [lo] with NS as is the case for far-infrared spectroscopy measurements 
[ 111 and there is at the present time a satisfactory picture of the behaviour of NENP from 
the experimental point of view. 

On the theoretical side, effective-quantum-field theories have been used to predict 
the magnetic-field behaviour of the spin-1 chain Heisenberg Hamiltonian that models the 
magnetic properties of NENP. In fact the original work of Haldane showed that, in the large- 
integer-spin limit, the antiferromagnetic spin chain is described in the low-energy limit by 
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an O(3) non-linear sigma model. This non-trivial field theory is difficult to study and, based 
on the large-N limit of the O(N) model, it has been suggested that a simple theory with 
three massive bosonic fields might be an appropriate effective theory of the spin-I chain. 
It is then possible to obtain the behaviour [12,13] of the system in a magnetic field. 

Another possibility has been suggested starting from an integrable chain 1141. It is 
known that the spin-I Hamiltonian ‘Ha = ci Si .Si+, -(Si .S+,)2 is solvable by the Bethe 
ansatz technique 11.51 and leads to a massless theory. This massless theory is characterized 
by an SU(2)k=z symmetry and can be realized by three (massless) Majorana fermions. 
As one perturbs the Hamiltonian towards the pure Heisenberg Hamiltonian without 
biquadratic coupling, it  is natural in the framework of the Haldane conjecture to expect that 
these fermions become massive. One can then use a theory of three free massive Majorana 
fermions to approximate the Heisenberg chain. These two theoretical approaches are not 
in complete agreement and it is thus interesting to have results of a completely different 
nature, based on numerical studies of finitechain diagonalization. 

In this paper, we present the results of our study of the field behaviour of a spin-I 
chain including realistic single-ion anisotropies of the most general kind. We diagonalize 
by means of a Lanczos algorithm chains of up to 16 spins under a magnetic field applied in 
various positions. Our findings are neatly summarized by a simple perturbation calculation 
that may be used as a practical tool to obtain the field behaviour of a Haldane magnet. When 
the applied field becomes strong enough there is a phase transition towards a magnetically 
ordered phase [ 12,131. In this paper we will restrict ourselves to the singlet phase where 
the Haldane gap is not destroyed. We give a discussion of the various level crossings that 
may or may not appear depending on the field orientation with respect to the symmetry 
axis of the crystal. Section 2 contains the treatment of the magnetic field as a perturbation. 
Section 3 explains the Lanczos results as well as their relationships with the perturbative 
expansion. Section 4 contains our conclusions and a discussion of NENP experiments. An 
appendix contains explicit formulas for the gaps from the perturbative treatment of the 
magnetic field. 

2. The perturbative results 

We focus on the microscopic Hamiltonian of a spin-I antiferromagnetic chain in an applied 
field and single-ion anisotropy: 

Here Si are quantum spins S = 1 and we include the Bohr magneton and the Land6 g factors 
in the definition of the magnetic field. The exchange coupling J is taken to be positive, i.e. 
antiferromagnetic. Below we set J = 1. The terms D and E in equation (2.1) parametrize 
the most general single-ion anisotropy. We work with periodic boundary conditions. In 
zero field and in the absence of anisotropy ( D  = E = 0) the Hamiltonian (2.1) is invariant 
under the full SU(2) rotation group. If the D term is non-zero then the symmetry is broken 
to a residual U(1) subgroup of rotations around the Z axis. If, in addition to D, there is 
some further in-plane anisotropy (non-zero E )  even this U(1) is broken. However in this 
case there are still discrete remnants of the initial SU(2): the system is invariant under x 
rotations around the coordinate axis X, Y, Z. These symmetry operations are denoted by 
R:, R; and R:. respectively, in this article. 
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If we now add a magnetic field, there is further symmetry reduction: when H is in a 
generic position with respect to the coordinate axis, even the discrete operations R;, R;. R: 
are lost. However, there are some special orientations of H that retain discrete symmetries: 
if H lies along the 01 axis, the symmetry RE is conserved. This corresponds simply to 
rotation around the magnetic field axis. These extra symmetries [16] explain the various 
level crossings that are found in our exact diagonalization studies reported in section 3. 

We now discuss the application of perturbation theory with respect to the terms D ,  E 
and H terms in Hamiltonian (2.1). We write equation (2.1) as 

7 i  = 'HO +?i, 

The Hamiltonian 7i0 has full rotational symmetry and its levels can thus be classified 
according to their spin. We focus on the effect of the perturbation on a singlet and a triplet 
state. We know that the ground state of 'Ho is in fact a singlet with chain momenmm K = 0 
and that the first excited state is a triplet with momentum K = n. Our statements about the 
effect of the perturbation are general since they are dictated by the Wigner-Eckart theorem. 

Let us first discuss the case of a singlet state IO). Due to complete isotropy, the following 
equalities hold: 

i 

In addition the vector (01 ri S;lO) is zero. We thus obtain the first-order shift of the singlet 
energy 

(2.4) 

We note that there is no effect from the in-plane E-term or H .  We now discuss the 
triplet splitting in zero field. In the standard basis the triplet states are denoted Ilm), 
m = -1,O. +l. Perturbation theory involves matrix elements of the following operator: 

(2.5) 

This is a spin-2 irreducible tensor operator since it transforms as a traceless symmetric 
tensor. Its standard components are denoted U('M), M = -2, . . . , +2. The Wigner-Eckart 
theorem implies that the matrix elements in a triplet state of such an operator are related by 

(2.6) (1m 1 0 " ~ )  1 1") = C (  1m 121 Mm') . 
In this equation (lml21Mm') is the Clebsch-Gordan coefficient coupling two spin-1 states 
to a spin-2 state. Thus perturbation theory is characterized by a single coeflicient C (to 
first order). This is easily found when working out matrix elements in the canonical basis 
Ix), Iy), lz) rather than using the standard basis. We consider the mabix elements 
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Application of a rr rotation shows that this element is zero if 01 and y are distinct. In this 
case there are only two different matrix elements. We can choose 

(XI C(S~')~IX)C= a )  

In addition one notes that b + 2a = N S ( S  + I )  = 2N. The perturbation 'Hs = xi D(S;)z + E[(S;)2 - (S:)*] in the canonical basis for the triplet can thus be written 
as 

a D  + (2N - 3a)E  0 

0 2(N  - a ) D  
n s = (  0 a D  + (3a - 2 N ) E  : ).  (2.9) 

As dictated by the Wigner-Eckart theorem there is only one coefficient that characterizes 
the perturbation. Subtracting the ground-state energy one is led to the following gap values: 

Ax = A - K D  + 3KE 

A, = A -  K D -  ~ K E  

Az = A i- 2KD. 

(2.10) 

In this equation A is the unperturbed triplet-singlet gap and we note that K = ;N -a. The 
coefficient a is extensive but the difference ;N - a is finite in the thermodynamic limit 
since K appears in gap values. The value of x is not dictated by rotational symmetry of 
course and its numerical value depends for example on the moment of the triplet. When 
E = 0 this splitting has been studied in detail [17.18] for the Haldane triplet with chain 
momentum n, which is the lowest-lying triplet. We note that already for D N 0.2J there 
are deviations from the previous perturbation theory: the slopes with D of the two gaps are 
found to be 

Ax = A, = A - 0.570 

Az = A + 1.410. 
(2.11) 

This is the best linear fit of the Lancziis results between D = 0.1OJ and D = 0.25J. The 
slope ratio is already slightly different from two as given by equation (2.10). The curvature 
of the gaps as functions of D is clearly seen in the data of [IS]. In fact a fit including 
quadratic terms in D of the same data leads to the following result: 

A, = Ay = A - 0.6680 + 0.269D2 

Az = A + 1.3570 + 0.135D2. 
(2.12) 

The first-order terms satisfy the perturbative results (2.10) and we clearly see the deviation 
from first order. For practical purposes it is simpler to use the fits (2.11). 

We now add the magnetic field to the perturbative treatment. The ground state, being 
a singlet, is not affected at first order and only the triplet changes. The matrix of the 
perturbation in the canonical basis is then 

px  iHz -iHy 

iHy -iH, p z  
iH, ) .  (2.13) 
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The quantities pa denote the diagonal matrix elements of equation (2.9). Shifting the origin 
of the energies it is convenient to set p. = Am and then the eigenenergies of (2.13) are 
directly the gaps. In section 3 we show that the resulting values are always extremely close 
to the Lanczos results when the magnetic field is below the critical value. Diagonalization 
of (2.13) does not lead to compact formulas except when the field lies along one of the 
symmetry axes. If H lies along the direction y we denote its only non-zero component by 
Hy. The eigenvalue A y  is unperturbed and the two other eigenvalues are given by 

A* = &(A. + Ap i [ (Aa - Ap)'+ 4H~I''*]. (2.14) 

Here or and j? are the two other coordinates. There is hyperbolic repulsion of the two gaps 
A+ and A-. The smallest gap A- goes to zero for a critical value H,' = A,Ap. At large 
fields the asymptotic behaviour of the gaps is linear. Of course the crossing of one member 
of the triplet with the ground state signals a phase transition [12,13] beyond which we do 
not expect to gain anything from a simple perturbative calculation since other states with 
higher spins also cross the ground state above H,. 

For the convenience of the reader we give in the appendix the general formulas for the 
gaps resulting from diagonalization of the matrix (2.13). 

It is interesting to note that this hyperbolic behaviour (2.14) is exactly what is found 
in the fennionic effective theory 1141 for states with K = JC. When the field becomes 
large and parallel to a coordinate axis the eigenstates of (2.13) take a simple form: they are 
given by lor) i i l j ? ) .  We note that the vanishing of A- at H, occurs linearly contrary to the 
free-boson prediction. 

If the gap value A y  (which does not move with the field) lies above or below the two 
gaps Am and Ag there is in general a crossing of levels between one of the gaps A* and 
A, before the critical field. As shown in section 3 since they behave differently under 
exact discrete symmetries of the system, we expect that these crossings will survive beyond 
perturbation theory. If however the magnetic field is no longer in a high-symmetry position 
these symmetries are broken and one should see only avoided crossings. 

3. Lanczos results 

We have performed a Lanczos study of the Hamiltonian (2.1) on chains of lengths N = 4,6 ,  
8. 10, 12, 14 and 16. For a generic orientation of the magnetic field, there are no symmetries 
available apart from translational symmetry to reduce the size of the problem. Thus many 
iterations were required to obtain the first few excited levels. The energies of the ground 
state (in the subspace K = 0) and the three low-lying levels (in the subspace K = x )  have 
been obtained with a typical precision of For a generic orientation of the magnetic 
field, the size of the complex Hermitian matrix 'H, 3 N ,  is reduced by translational symmetry 
to - 3 N / N .  The size of the Hilbert space for N = 16 is - 1.3 x lo6. On one Cray-2 
processor, acting with 'FL on a vector takes about 17 s and the precision of is reached 
for - 60 iterations. 

We have followed the triplet splitting as a function of the E term. NS experiments [ 191 
have shown that there is a small splitting of the two low-lying modes in the case of NENP: 
A, 1.05 meV and A, N 1.25 meV. This means that the E term is much smaller than the 
D term in equation (2.1) since AL Y 2.5 meV. We treat it perturbatively but keep the D 
term in the unperturbed Hamiltonian to be solved by the Lanczos technique. When E = 0 
the Haldane triplet is split into a high-energy singlet and a doublet. First-order perturbation 
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theory for the E term requires its matrix elements in the subspace spanned by the doublet. 
We find a linear splitting: 

Here Ao(D) is the doublet gap when E = 0. It can be found from equation (2.11). The 
constant K O ( D )  has been computed for all lattice sizes. Its values as a function of D are 
given in figure 1. We have used the Shanks algorithm 1171 to obtain an estimate of the 
thermodynamic limit value of K ,  In the case of NENP it has been shown [I71 that the 
exchange coupling J is close to 44 K and D N 0.18 J. For such values we find in the 
thermodynamic limit KO Y 2. The corresponding estimate for the in-plane anisotropy is 
E 0.012 1, thus reproducing the splittings of NEW [9]. These values are used in all 
figures. 

I I I I I 

0.0 0.1 0.2 0.3 0.4 0.5 
anisotropy D 

Figure 1. The coefficient KO as a function of the anisotropy D up to D = 0.5, The raw 
data coming from the finite chain wlculation are plolted as open symbols: from bottom to lop, 
N = 4.6, 8, IO. 12, 14, 16, and 18. We have performed an extrapolation to the thermodynamic 
Limit using lhe Shanks algorithm. The corresponding results are plotted as filled diamonds. 

We now take for granted the zero-field splittings and add a magnetic field along the 
coordinate axis. We present the Lanczijs results for the longest chain we were able to 
deal with in figures 2-6. We find that the numerical points are very well reproduced for 
all chain lengths by the following procedure: we take the zero-field gaps as inputs in the 
perturbative formula (2.14) and obtain the field behaviour. The results are plotted as full 
curves in figures 2-6. One has of course to vary the gaps with the chain length but the 
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hyperbolic behaviour holds for all lengths. The deviations between the exact results and the 
perturbative curves are of the order of lo-'. In figures 2, 3 and 4 the field lies respectively 
along Z ,  X, and Y. One of the gaps is barely affected and the other two are split according 
to the simple formula (2.14). If H lies along 2 there is a crossing between the Az and A, 
modes (figure 2), if H lies along Y then there is a crossing between Ar and Ay (figure 4). 

0.0 0.2 0.4 0.6 
Mognetic field H (in units of J) 

Figure 2. The three gaps in units of I as function of the masetic field applied along the Z 
axis. The poinls are rcsults from the Lanczbs technique for a 16-spin chain. The full curves 
are the results of perturbation theory equation (2.14). Note the crossing between the x and L 
modes. The two points on the right that deviate seriously from the pemrbdvive curves are in fact 
the energies of a state lhat do not belong to the Haldane niplet and that has crossed the upper 
members of the Viplet. For the Viplet state the deviations always stay small. The anisonopies 
are chosen to fit the NENP gaps: D = 0.18 and E = 0.012 in all figures. 

It is interesting to note that, before the critical field is reached, one observes that other 
states with higher spin begin to arrive from higher energies. This is seen in all our figures: 
the upper 'triplet' mode always follows the perturbative trend but there are new states that 
are lower in energy close to Hc that do not belong to the Haldane triplet. These states will 
ultimately cross the ground state after the transition point [20]. 

Let us consider the case of figure 2 where H lies along Z .  Then the operation R: i s  a 
symmetry operation of the Hamiltonian. We can classify the triplet members according to 
their behaviour under R; : 

(3.2) 

Thus no matrix element can avoid the crossing between these two members of the triplet 
(x  and z). It is important to realize the following: when H = 0 and 'Hs = 0 we can 
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1 -  - 1.0 - 

0.8 - - 
D 

h 0 

7 0.6 - - - 
0 
m 
d ._ 
5 0.4 - n o o  
c 

- 
._ 
v 

0.0 0.2 0.4 0.6 
Mognetic field H (in units of J) 

Figure 3. The lhree gaps in units of J as a funuion of the magnetic field applied along the X 
axis. The symbols have the same meaning as in figure 2. There is no crossing of levels before 
the critical field. 

0.0 0.2 0.4 0.6 
Magnetic field H (in units of J) 

Figure 4. The three gaps in units of J as function of the magnetic field applied along the Y 
axis. The symbols have the same meaning as in figure 2. Note the crossing between the x and 
y modes. 
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1.0- 

c 

YI a 
0 
U 

._ 
v 

I I - 

Figure 5. The three gaps in units of 3 as function of the magnetic field applied along a 
direction close to the Z axis, defined by polar angles B = 5" and @ = 45'. There is now an 
avoided crossing between z and x modes since there is no longer a discrete symmetry to allow 
a degeneracy. This is generic behaviour since the field is not in a symmetry plane. 

demonstrate (3.2) for the degenerate triplet. By continuity the behaviour under the preserved 
symmetry operations R," will survive the addition of H and 'lis. This does not rely upon 
perturbation theory but rather on the continuity of a discrete quantum number as a function 
of field and anisotropy. This reasoning holds also for X and Y axes. 

When the field no longer lies along a coordinate axis, the crossings are avoided. A 
typical example is given in figure 5. Here the field is very close to the 2 axis and thus there 
is an avoided crossing between the upper mode ( z )  and the intermediate (x) mode. This 
should be compared with figure 2 ( H  /I Z). The full curves in figure 5 are obtained from 
the diagonalization of perturbation (2.13). It is always very close to our Lanczos results. 
We have checked that for various field arrangements the same property is true. Another 
example is given in figure 6 where the field lies close to the Y axis. 

Experimental results have been reproduced by use of a formula from the effective 
fermionic theory [14]. The agreement of ESR [lo, 111 and neutron measurements [9] is 
indeed very good. We note that for the K = II mode this formula from [ 141 is simply our 
perturbation result equation (2.14), as can be seen by straishtforward algebra. This means 
that NENP (at least) follows extremely well the hyperbolic behaviour (2.14). What we have 
shown is that a spin-1 chain follows the hyperbolic behaviour (2.14) by an ab initio Lanczos 
study. As a consequence the compound NENP is satisfactory described by an anisotropic 
spin 1, at least as far as ESR and NS are concerned. 

4. Conclusion 

We have studied the magnetic-field behaviour of a realistic spin-1 chain with the most 
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Figure 6. The three gaps in units of 3 as function of lhe magnetic field applied along a direction 
close 10 lhe Y axis (8 = 85" md # = 80"). The avoided crossing takes place between x and y 
modes. 

general single-ion anisotropy that has proved adequate for NENP. The three gaps have been 
computed as a function of the field by means of a Lanczos technique for chains of lengths 
up to 16 spins. Our results are well reproduced by a simple perturbation theory. This 
perturbative approximation is identical to the result of the fermionic effective theory [14] 
when K = n. We have shown that one needs only to know first-order perturbation theory to 
derive it in a satisfactory manner. For arbitrary field orientation and arbitrary chain length we 
have observed that the perturbative behaviour holds. We thus infer that the thermodynamic 
limit will be also described by the same approximation. Our ab initio results confirm some 
aspects of the effective theories that have been applied to the spin-1 chain. 

The field splitting of the Haldane gaps in figures 2, 3 and 4 is that found in experiments 
on NENP 17-1 11. Both ESR and NS experiments have observed the same splitting of the 
Haldane gap. Below the critical field there is clearly a very good agreement between 
theory and experiments, At large field the asymptotic behaviour of the wavefunctions 
leads to a polarization of the modes that is similar to experimental data. Quantitative fits of 
experimental results have been performed using a hyperbolic behaviour equation (2.14). We 
have shown that this behaviour is obeyed by an anisotropic spin-1 chain. As a consequence 
the compound NENP is satisfactorily described by such a spin chain. 

In the future it would be interesting to obtain the magnetization curves in a realistic 
spin-1 chain following the lines of [ZO]. Another possibility would be to investigate in 
detail the dynamical properties under a field as has been done recently in the zero-field case 
[2 I ,  221. 
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Appendix 

In this appendix we give for the convenience of the reader the complete perturhative formulas 
for the gaps. The matrix to be diagonalized is given in equation (2.13). Its characteristic 
polynomial is 

x3 + a l x 2  + a2X + a3 = O 

where we have defined 

al = - ( p X  + pY + pd 

a z =  P ~ P ~ + P ~ P ~ + P ~ P ~ - W ~ + H ~ + H ~ )  

a3 = P& + pYH; + PJ: - P ~ P ~ P ~ .  

The general solution is obtained through textbook formulas: 

Q = $(a? - 3a2) 

The gaps are then 

R = &(2a: - gala2 + 27a3) T = a r c ~ o s ( R / Q ~ / ~ ) .  
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